was obtained. 15: ¹H NMR δ 1.67 (m, 4 H), 2.12 (m, 3 H, CH₃), **2.25 (m, 4 HI, 2.88 (m, 2 HI;** *'gF* **NMR** *b* **-59.6; 'Bc NMR** *b* **14.3, 22.6, 22.7, 23.1, 25.0, 48.7** (C-3), 123.7 **(q, ¹J = 271 Hz, CF₃), 130.6** (9, **J* = **36 fi, C-l), 136.1 (C-8),137.7 (c-9),144.6 (c-2); MS** *m/e* **²⁰²(M', 71), 185 (M** - **15, 38), 174 (M** - **28, 23), 159 (30), 141** (12), 133 (41, M – CF₃), 115 (12), 105 (100), 91 (24), 79 (14), 77 (10), 69 (14); IR no C=0 vibration.

Acknowledgment. We wish to thank Prof. Barry B.

Snider for helpful criticisms during the preparation of the paper and Prof. Takeshi Nakai for stimulating discussions. We gratefully acknowledge M. Ourevitch **(CERCOA)** for **~JJ** NMR experiments.

Supplementary Material Available: NMR data of products **lb, IC, 2b, 3a, 5a, 6a, Sa, loa, lla, 12a, 13a, 3b, 4b, 6b, 8b, 14, and 15 (53 pages). Ordering information is given on any current masthead page.**

Use of Sulfoxides as Cocatalysts in the Palladium-Quinone-Catalyzed l,4-Diacetoxylation of 1,3-Dienes. An Example of Ligand- Accelerated Catalysis

Helena Grennberg, Adolf Gogoll, and Jan-E. Backvall*

Department of Organic Chemistry, University of Uppsala, Box 531, S-75121 Uppsala, Sweden

Received February 21, 1991

The use **of sulfiiyl** quinones **as cocatalyets** in **the palladium-catalyzed 1,4diacetoxylation of 1,3dienes improves the stereochemical outcome of the reaction by increasing the rate of the internal migration of the acetate nucleophile. A mechanism of the interaction between the sulfoxide and the intermediate (r-ally1)palladium complex, based on 'H NMR results, is proposed.**

Introduction

The palladium-catalyzed diacetoxylation of 1,3-dienes **is** a high-yielding **regie** and diastereoselective reaction that gives access to synthetically useful products (eq 1).¹ To

oxidant **2HOAc** ⁺*Q* catalysts Ace..(>-- - **(1) Room lemperalure**

further improve the scope of this reaction, it was our objective to increase the reaction rate **as** well **as** to investigate the possibility of introducing enantioselectivity. The idea was to enhance the interaction between the intermediate $(\pi$ -allyl)palladium complex and the quinone used as oxidant (or electron-transfer mediator), since this interaction is of importance for the selectivity of the reaction.²

Several reactions that employ 1,4-benzoquinones as stoichiometric oxidants or electron carriers in selective palladium-catalyzed oxidations have recently been developed in this group. $2-4$ When the quinone is used in catalytic amounts, an external oxidant such as $MnO₂²$ or molecular oxygen activated by a metal macrocycle' is employed (eq 1). In the present study molecular oxygen, activated by iron phthalocyanine (Fe(Pc)), was chosen **as** the external oxidant. This allows the progress of the reaction to be monitored by the oxygen consumption.

Results and Discussion

The interaction between the $(\pi$ -allyl)palladium complex. and the quinone can be enhanced by increasing the electron density of the quinone itself or by introducing an additional "handle" on the quinone in the form of a coordinating substituent. Previous investigations, in which a wide variety of quinones were employed, have shown that reaction rate and selectivity are markedly dependent upon the quinone substituenk2 **This** might have steric **as** well as electronic reasons. The best results, regarding both rate and selectivity, were obtained for the unsubstituted 1,4 benzoquinone and for quinones with an electron-withdrawing and an electron-donating group in the 2- and 3-positions, respectively. This indicates that the electron density of the quinone may not be varied much.

It is known that sulfoxides form strong complexes with $Pd(\Pi)$,⁵ and $(\pi$ -allyl)palladium(sulfoxide) species have been characterized by NMR spectroscopy.⁶ Other related. characterized by NMR spectroscopy.⁶ weaker complexating agents are nitriles^{5b,7} and DMF.^{5b,8} Since the sulfoxide group **has** good complexation properties we decided to study 2-sulfinyl- l,4-benzoquinones **2a-c,**

Since **these** chiral sulfinyl quinones may be useful in enantioselective reactions the $R-(+)$ -enantiomer of $p-$

0022-3263/91/1956-5808\$02.50/0 (0 **1991** American **Chemical** Society

⁽¹⁾ BHckvall, J. E.; Nordbeg, R E. *J. Am. Chem. SOC.* **1981,103,4959.** (2) **Bäckvall**, J. E.; Byström, S. E.; Nordberg, R. E. J. Org. Chem. 1984, **49, 4619.**

^{(3) (}a) Bäckvall, J. E.; Nyström, J. E.; Nordberg, R. E. J. Am. Chem.
Soc. 1985, 107, 3676. (b) Bäckvall, J. E.; Vägberg, J. O. J. Org. Chem.
1988, 53, 5695. (c) Bäckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1990, *112*, 3683. (d) Băckvall, J. E.; Gogoll, A. J. Chem. Soc., Chem.
Commun. 1987, 1236. (e) Băckvall, J. E.; Granberg, K. L.; Hopkins, R.
B. Acta Chem. Scand. 1990, 44, 492.

^{(4) (}a) Bäckvall, J. E.; Awasthi, A. K.; Renko, Z. D. J. Am. Chem. Soc.
1987, 109, 4750. (b) Bäckvall, J. E.; Hopkins, R. B. Tetrahedron Lett.
1988, 29, 2885. (c) Bäckvall, J. E.; Hopkins, R. B.; Grennberg, H.; Mader, **M. M.; Awaethi, A. K.** *J. Am. Chem. SOC.* **1990,112,5160.**

^{(5) (}a) Bennett, M. J.; Cotton, F. A.; Weaver, D. L.; Williams, R. J.; Watson, W. H. Acta Crystallogr. 1967, 23, 788. (b) Wayland, B. B.; Schramm, R. F. Inorg. Chem. 1969, 8, 971. (c) Bancroft, D. P.; Cotton, F. A.; Verbru

^{(6) (}a) Ramey, K. C.; Statton, G. L. *J. Am. Chem. SOC.* **1966,88,4387. (b) Powell, J.** *J. Chem. SOC.* **A 1971, 2233.**

⁽⁷⁾ Kharaech, M. S.; Seyler, R C.; Mayo, F. R. *J. Am. Chem. Soc.* **1988,**

^{60, 882.}

⁽⁸⁾ Conti, F.; Donati, M.; Pregaglia, G. F.; Ugo, R. *J. Orgonomet. Chem.* **1971, 30, 421.**

^{(9) (}a) Brimble, M. A,; Brimble, M. T.; Gibson, J. J. *J. Chem.* **SOC.,** *Perkin Trans.* **1 1989, 179. (b) Dimroth,** *0.;* **Kraft, L.; Aichinger, K.** *Liebigs Ann. Chem.* **1940,545, 124. (c) Alcalay, W.** *Helv. Chim. Acta* **1947,** *30,* **578.**

tolylsulfinyl benzoquinone 4 was prepared by a different route (eq **3).'O**

When the sulfinyl quinones **2a-c** and 4 were used **as** catalysts in the aerobic palladium-catalyzed 1,4-diacetoxylation of 1,3-cyclohexadiene, we observed not only a significant increase in the reaction rate compared to the sulfoxide-free reaction (Figure l), but also a larger trans to cis product ratio. An experiment with catalytic amounts of an equimolar mixture of 1,4-hydroquinone (HQ) and dimethyl sulfoxide **(DMSO) also** yielded an improved reaction rate and stereoselectivity. This supports the assumption of a coordination of the sulfoxide.

In a semipreparative experiment with (phenylsulfinyl)benzoquinone (2a) as quinone catalyst, 5.2 mmol of 1,3-cyclohexadiene was oxidized aerobically to give an isolated yield of 85 % of **1,4-diacetoxy-2-cyclohexene,** (>- **95%** trans) in 5.5 h. If, instead of **2a,** a catalytic amount of 1,4-hydroquinone is used with **DMSO as** cocatalyst the oxygen uptake ceased at 75% conversion and gave an

~ ~~

Table 1. '€I **NMR Chemical Shift Changer (Aa) of the (r-Allyl) Ligand Protone upon Addition of DMSO-I, to the** Dimeric Bis[(4-acetoxy- η^2 -(1,2,3)-cyclohexenyl)palladium **acetate] (6) in Acetic Acid-d,**

			$\Delta\delta$ (Hz)				
complex	ligand, L	L:Pd	$H-1$	$H-2$	$H-3$	$H-4$	
6	DMSO	1.3:1	12	9	9		
6	DMSO	2.6:1	24	18	15		
6	CH ₃ CN	2:1	9		6	-12	
6	CH_3CN	4:1	21		15	-18	

isolated yield of diacetate of 72% **(>95%** trans) in 5.5 h.

In the presence of a sulfoxide-containing ligand the relative amount of trans product, resulting from internal attack of acetate (cis migration), was increased from 91% $(10:1)^2$ to $>95\%$ $(20:1)$.

It has been shown by **'H NMR** that the key step in the diacetoxylation is the coordination of the quinone to the (r-ally1)palladium complex." When **DMSO** was added to the isolated intermediate $(\pi$ -allyl)palladium complex 6 , significant alterations of the proton chemical shifts were **observed** (Table I). *All* the proton resonances were **shifted** to lower field and the line width of the signals decreased slightly. **A similar** but weaker effect was observed **also** for acetonitrile. These effects, which are not observed on addition of 1,4-benzoquinone only, indicate complexation of the sulfoxide and nitrile, respectively. **No** formation of diacetate could be detected as long **as** no benzoquinone was present.

These observations suggest that the sulfoxide, **as** the stronger ligand, is coordinated to palladium in the *(r-al-*1yl)palladium complex **5,** thus inhibiting the formation of the less reactive dimer **6.12** The rate of the reaction is

⁽¹⁰⁾ (a) CarreRo, M. C.; GarciaRuano, J. L.; Urbano, A. *Tetrahedron Lett.* **1989, 30, 4003. (b) Andemen, K. K.; Gaffield, W.; Papanikolaou, N. E.; Foley, J. W.; Perkins, R. I.** *J. Am. Chem. SOC.* **1964,86,5637. (c) Snyder, C. D.; Rapoport, H.** *Ibid.* **1972,94, 227.**

⁽¹¹⁾ Biickvall, J. E.; Gogoll, A. *Tetrahedron Lett.* **1988,** *29,* **2243..**

⁽¹²⁾ Since sulfoxides are strong bridge-splitting ligands! the equlllb rium is likely to favor the monomeric complex 1.

Figure 1. Oxygen uptake for the aerobic oxidation of 1 mmol of 1,3-cyclohexadiene catalyzed by the triple catalytic system $Pd(OAc)₂$ -quinone-Fe(Pc) in acetic acid at room temperature (23 "C). Quinones used: x = 2a, **A** = 2b, *0* = 2c, **A** = **4,** = HQ + DMSO, *0* = HQ.

further increased if the sulfoxide and the quinone are parts of the same molecule.

The improved stereoselectivity, which is a result of an increased rate of internal migration, indicates a specific interaction between $(\pi$ -allyl)palladium complex, sulfoxide, and quinone. A probable reaction sequence is proposed in Scheme I.

Complex **5** with a sulfoxide coordinated should have a low reactivity toward nucleophiles compared to a $(\pi$ -al-1yl)palladium-1 ,4-benzoquinone acetate complex, in accord with the inability of the analogous $(\pi$ -allyl)palladium-(DMSO)-acetate complex to react with acetate in the absence of a quinone (vide supra). Coordination of the quinone double bond to palladium dramatically increases the reactivity. Such a coordination of **5** would lead to a highly reactive $(\sigma$ -allyl)palladium complex 7 with palladium coordinated to the quinone double bond and probably also to the sulfoxide, which is known to be an ambidentate ligand.¹³ We have previously reported results which indicate that cis migration of acetate takes place from a $(\sigma$ -allyl)palladium complex.² The present results are consistent with a rate increase of intend cis migration (path A, Scheme **11)** by a factor of 2, whereas the rate of the external trans attack (path **B)** remains essentially the same. This would explain the change of the 8a:9a ratio from $10:1$ to $20:1$ when $1,4$ -benzoquinone is replaced by a **2-sulfinyl-l,4-benzoquinone.**

The proposed mechanism (Scheme I) was supported by the results from the sulfoxide-assisted diacetoxylation of 1,3-cycloheptadiene. When sulfinyl quinones were employed in the $1,4$ -diacetoxylation of $1,3$ -cycloheptadiene using the same reaction conditions **as** above, the reaction rate decreased considerably and the relative amount of **cis-1,4-diacet~xy-2-cycloheptene (9b)** decreased from 93% in the sulfoxide-free reaction² to 88%. Apparently the external attack by acetate (path B, Scheme **11)** has been slightly depressed. For steric reasons, the formation of a $(\sigma$ -allyl)palladium complex and subsequent cis migration is unfavored in the seven-membered ring? However, it is known that trans diacetoxylation of 1,3-cycloheptadiene is less unfavored at very low AcO⁻ concentrations, e.g., no added LiOAc, and slightly elevated temperature $(40 °C).²$ The presence of a sulfoxide under these reaction conditions increased the reaction rate slightly, but the stereochemistry of the product was not significantly changed from that obtained with 1,4-benzoquinone (i.e., $8b:9b \approx 2:1$).

Since sulfoxides form strong complexes with palladium- **(11)** salts5 it occurred to us that the sulfoxide-containing quinone may be coordinated to palladium throughout the whole catalytic cycle (cf. Scheme **I).14** With a chiral sulfoxide this would result in a diastereomeric interaction in the coordination of the diene and hence in the formation of the $(\pi$ -allyl)palladium complex. With the aim of obtaining asymmetric induction we therefore investigated the 1,4-diacetoxylation employing the enantiomerically pure sulfinyl quinone **4** as the ligand and electron-transfer mediator. However, no asymmetric induction has yet been detected.

Conclusion

A sulfoxide as cocatalyst in the palladium-catalyzed diacetoxylation favors internal migration. For 1,3-cyclohexadienes, this results in an increase of the reaction rate and an increased trans diastereoselectivity. The results can be rationalized by a complexation of the sulfoxide to palladium and a subsequent formation of an intermediate $(\sigma$ -allyl)palladium complex.

Experimental Section

NMR spectra were recorded **as** follows: **'H** at 200 or 300 MHz and ¹³C at 75.4 MHz. Spectra of 1,4-diacetates were recorded for CDCl₃ solutions. ¹H NMR spectra of $(\pi$ -allyl)palladium complexes¹⁵ were recorded for acetic acid- d_4 solutions. FT-IR spectra were recorded for CDCI₃ solutions. Mass spectra were recorded at 70 eV (direct inlet). Analytical gas chromatography was performed with a 30-m DB-5 **J&M** fused silica **column.** Palladium diacetate was from Aldrich. Fe(Pc) was either from Strem Chemicals Co. or synthesized **as** in ref 4c. Since Fe(Pc) has very low solubility in the reaction media, the degree of activity of the metal-macrocycle was important^{16a} and the activity should be checked as described below for each batch used. 1,3-Cyclo-
hexadiene was from Merck and was distilled prior to use.
Test for the Catalytic Activity of Iron Phthalocyanine

 $Fe(Pe)$. A solution of 70 mg (0.12 mmol, 5%) of $Fe(Pe)$ and 250 *mg* of hydroquinone (2.27 mmol) in *5* **mL** HOAc was stirred under an O₂ atmosphere. The O₂ consumption was followed with a buret.^{4b,c} $Fe(Pe)$ with acceptable to good catalytic activity should consume 27 mL of O_2 in 6-10 h $(T_{1/2} = 2-3$ h), whereas some very active batches were able to complete the oxidation in 2 h $(T_{1/2} = 30 \text{ min})$.

Activation **of** Fe(Pc).'6 Inactive Fe(Pc) (2 **g) was** dissolved in 50 mL of concentrated H₂SO₄. The brown solution was filtered **in** contact with air, and Fe(Pc) was precipitated by carefully pouring the acidic solution into 300 mL of cold aqueous EtOH (30% v/v). The mixture was allowed to cool to rt. The green suspension of $Fe(Pc)$ was centrifuged, and the pellet was washed

⁽¹⁴⁾ Equimolar **amounts of Pd(OAc)p and sulfinyl quinone 2a in acetic acid formed a precipitate which, according to MS and IR, contained**

palladium and quinone. The stoichiometry and structure of the complex
are currently under investigation.
(15) (a) Bökman, F.; Gogoll, A.; Pettersson, L. G. M.; Bohman, O.;
Siegbahn, H. O. G. Manuscript in preparation. (b) 712. (d) Ercolani, C.; Gardini, M.; Monacelli, F.; Pennesi, G.; Rossi, G. *Ibid.* 1983, 22, 2584.

with water (three times), very dilute NH₄OH, and finally once with water. The $Fe(Pe)$ was then dried over P_2O_6 in vacuo to yield about 0.8 g of activated Fe(Pc), which was then checked as described above. Active Fe(Pc) should be kept in dark containers.

General Procedure for the Preparation of Racemic Sulfinyl Quinones. (I) Preparation of 2-(Arylthio)- and 2- **(Alkylthio)-1,4-quinonee. 2-(Phenylthio)-l,4-bemzoquinone** $(1a).^{5a,b}$ Thiophenol $(5 mL, 0.04 mol)$ in methanol $(5 mL)$ was added to a suspension of 1,4-benzoquinone (8.7 g, 0.081 mol) in methanol **(50** mL). The mixture was swirled for 5 min, during which time it became a clear, orange-brown solution. Water (100 mL) was added, and the resulting precipitate was collected by filtration. The orange crystals were recrystallized from cyclohexane to yield 5.8 g (69%) of the thioether la: mp 113-115 °C (lit?b mp 114 "C); 'H NMR 6 7.5 **(s,** 5 H, phenyl), 6.82 (d, *J* = **IR** 1668, 1644, 1567 cm⁻¹; MS m/z 216 (M⁺, 56), 187 (20), 160 (17), 134 (85). 13 Hz, 1 H, H-6), 6.68 (d, $J = 13$ Hz, 1 H, H-5), 5.88 (s, 1 H, H-3);

2-(Cyclohexylthio)-l,4-benzoquinone (lb) was prepared according to the above procedure. Ib was isolated in 83% yield **as** orange-brown crystals: mp 102-106 "C; 'H NMR 6 6.8 (d, J $J = 3$ Hz, 1 H, H-3), 3.1 (tt, $J = 4$, 10 Hz, 1 H, S-CH), 2.05 (m, 2 H), 1.81 (m, 2 H), 1.45 (m, 6 H); **IR** 1667,1642,1546 cm-'; MS m/z 222 (M⁺, 14), 142 (28), 112 (7). Anal. Calcd for $C_{12}H_{14}O_2S$: C 64.83; H 6.36. Found: C, 64.64; H 6.18. $=10$ Hz, 1 H, H-6), 6.72 (dd, $J = 10$, 3 Hz, 1 H, H-5), 6.41 (d,

2-(*n*-Butylthio)-1,4-benzoquinone (1c)^{9c} was prepared as described above. Ic was obtained as red-brown crystals in 55% yield: mp 78-80 °C (lit.^{9c} mp 82 °C); ¹H NMR δ 6.8 (d, $J = 10$ Hz, 1 H, H-3), 2.77 (t, $J = 7$ Hz, 2 H, S-CH₂), 1.72 and 1.48 (two m, $w_{1/2} = 9$ Hz, 2 H each, CH₂), 0.96 (t, $J = 7$ Hz, 3 H, CH₃); IR 1668,1643, 1547 cm-'; MS *m/z* 196 **(M+,** 29), 140 (49), 112 (37), 82 (42) Hz, 1 H, H-6), 6.71 (dd, $J = 3$, 10 Hz, 1 H, H-5), 6.38 (d, $J = 3$

(11) Preparation of **2-Sulfinyl-1,4-quinones.** 2-(Phenylsulfinyl)-1,4-benzoquinone (2a).^{3a} To a solution of the thioether (1.0 g, 0.05 mol) in CH_2Cl_2 (20 mL) was added m-chloroperoxybenzoic acid (m-CPBA) (1.1 equiv) in CH₂Cl₂ (5 mL). The mixture was stirred at rt for 1 h. The mixture was then washed with aqueous saturated NaHCO₃ (3×10 mL), dried (MgSO₄), and evaporated to give 0.9 g of crude product, which was flash chromatographed (silica, CH_2Cl_2 -ether gradient) to yield the phenylsulfinyl quinone 2a (0.75 g, 70%) as orange needles: mp 118 "C (lit.* mp 118.5-119.5 "C); 'H *NMR* 6 7.78 (m, 2 H, phenyl), 7.5 (m, 3 H, phenyl), 7.44 (d, *J* = 2 Hz, 1 H, H-3), 6.81 (dd, J = cm-'; MS *m/z* 232 (M+, 23), 184 (9), 150 (27). 10,2 Hz, 1 H, H-5), 6.72 (d, *J* = 10 Hz, 1 H, H-6); IR 1666, 1098

2-(Cyclohexylsulfinyl)-l,4-tenzoquinone (2b) was isolated in 86% yield **as** orange needles, mp 112-113 "C, after stirring the thioether 1b with 1.1 equiv of m-CPBA in CH_2Cl_2 for 12 min at 0 **"C** and subsequent workup **as** described above: 'H NMR 6 7.22 **(d,** *J* = 2 Hz, 1 H, H-3),6.72 (br s,2 H, H-5 and H-6), 2.95 (tt, *J* = 4, 12 Hz, 1 H, SCH), 2.15-1.2 (several m, 10 H); **IR 1663**, 1586, 1065 cm⁻¹; MS m/z 156 (M⁺ - C₆H₁₀, 27), 112 (2.5), 83 (45), 55 (100). Anal. Calcd for $C_{12}H_{14}O_3S$: C 60.47; H 5.93. Found: C 60.39; H 5.88.

2-(n **-Butylsulfinyl)-l,4-benzoquinone** (2c) was obtained in 50% yield as orange crystals, mp 65-71 "C, after stirring the thioether 1c with 1.1 equiv of m -CPBA in CH_2Cl_2 for 10 min at 0 "C and subsequent workup **as** described above: 'H NMR 6 7.3 (d, *J* = 2 Hz, 1 H, H-3), 6.88 (br s, 2 H, H-5 and H-6), 3.13 and 2.84 (two m, $w_{1/2} = 11$ Hz, 1 H each, SCH₂), 1.9 and 1.58 (two m, $w_{1/2} = 27$ Hz, 1 H each, SCCH₂), 1.47 (m, $w_{1/2} = 23$ Hz, 2 H), 0.96 (t, $J = 6.5$ Hz, 3 H, CH₃); IR 1663, 1047 cm⁻¹; MS m/z 163 for $C_{10}H_{12}O_3S$: C, 56.58; H. 5.71. Found: C, 56.43; H, 5.56. (18), 156 (M+-C4H8,43), 139 (16), 128 (3),82 (11). **Anal.** Calcd

Preparation of Optically Active Sulfinyl Quinone. **1- (R)-(+)-(p-Tolylsulfinyl)-2,5-dimethoxybenzene (3).lon** 1- **Bromo-2,5-dimethoxybenzene** (1.0 g, 4.6 mmol) in dry THF (4 mL) was added to dry Mg (0.15 g, 6.4 mmol), and the mixture was stirred under N_2 . The reaction started on heating. The Grignard reagent formed was added slowly (1.5 h) with a syringe to a solution of (S) - $(-)$ - $(p$ -tolylmenthyl)sulfinate $(1.36 g, 4.6 mmol)$ in diethyl ether (10 mL) at 0 °C under N_2 . The reaction was stirred at 0 "C for an additional 3.5 h, then at **rt** for 3 h. At *50%* conversion (GC) the reaction was washed with aqueous saturated $NH₄Cl$ (3 \times 100 mL) and the organic layer was collected. The aqueous layer was extracted with ether (3 **X** 15 mL). The combined organic layers were dried $(MgSO₄)$ and concentrated to 3 mL. The crude product was then flash chromatographed (silica, ether) and evaporated to yield 0.43 g (65% based on reacted material) of 3 as beige crystals, mp 84-88 °C, and unreacted chiral $(p$ -tolylmenthyl)sulfinate. ¹H NMR of 3: δ 7.58 and 7.22 **(AA'XX'**, 4 H, tolyl system), 7.49 (d, $J = 3$ Hz, 1 H, H-6), 6.91 (dd, $J = 9$, s, 3 H each, OMe), 2.35 (s, 3 H, ArMe); IR 1493,1042 cm-'; MS m/z 276 (M⁺, 36), 259 (74), 228 (37), 198 (15), 105 (100). 3 Hz, 1 H, H-4), 6.78 (d, *J* = 9 Hz, 1 H, H-3), 3.83 and 3.72 (two

(R)-(+)-l-(p-Tolylsulfinyl)-2,5-benzoquinone (4).14 Protected quinone 3 (99 mg, 0.4 mmol) and freshly prepared Ago $(200 \text{ mg}, 1.6 \text{ mmol})$ were mixed in 4 mL of dry dioxane. $HNO₃$ (6 M, 0.4 mL) was added, and the mixture was stirred in air at room temperature for 5 **min,** during which time the mixture turned red and cleared. The reaction was quenched by the addition of water (4 mL) and $CHCl₃$ (16 mL). The organic layer was washed with water $(2 \times 5 \text{ mL})$, dried (Na_2SO_4) , and evaporated. The crude product was recrystallized from ether to yield **90** mg (91%) of 4 as red needles, mp 129 °C. Physical and spectroscopic properties were in accordance with the literature.^{10a}

General Procedure for Sulfoxide-Assisted Palladium- (11)-Catalyzed l,4-Diacetoxylation of Conjugated Dienes. **1,4-Diacetoxy-2-cyclohexene.** Use of Sulfinyl Quinones. Pd(OAc)₂ (51 mg, 0.23 mmol), (phenylsulfinyl)benzoquinone (2a; 61 mg, 0.27 mmol), Fe(Pc) *(50* **mg,** 0.09 mmol), and LiOAcx2Hz0 (635 mg, 6 mmol) were dissolved in acetic acid (10.0 mL). The reaction vessel was quickly purged with 1 atm of O_2 .^{4b,c} 1,3-Cyclohexadiene (419 mg, 5.2 mmol) was added over a period of 2 h. The oxygen consumption was monitored with a gas buret.^{4b} When the consumption had ceased (61 mL (2.5 mmol) of O_2 , 5 h 30 min), the reaction mixture was worked up by first diluting it to 30 mL with water, followed by extraction (4 **X** 15 mL pentane/ether (41)). The combined organic layers were washed (1 \times 15 mL of H₂O; 2 \times 15 mL of 2 M NaOH; 1 \times 15 mL of H₂O), dried $(MgSO₄)$, and evaporated to yield 875 mg $(4.4 \text{ mmol}, 85\%)$ of 1,4-diacetoxy-2-cyclohexene, >95% trans (±0.5% from ¹H **NMR), as** white crystals. The product was compared *(NMR)* with an authentic sample.²

Use of DMSO. As described above for the (phenylsulfinyl)benzoquinone, but replacing the sulfinyl quinone with 1,4-hydroquinone (29 mg, 0.27 mmol). After the first addition of diene (total 420 mg, 5.2 mmol), 20 μ L (0.28 mmol) of DMSO was added. After 5 h 30 min the oxygen uptake had ceased (46 mL, 1.9 mmol of O_2). Subsequent workup yielded 745 mg (3.8) mmol, 72%) of **1,4-diacetoxy-2-cyclohexene,** >95% trans **(*0.5%** from 'H NMR).

Capillary GC of the organic layer before the washing procedure indicated that some quinone had been consumed in a Diels-Alder reaction with 1,3-cyclohexadiene.

Acknowledgment. Financial support from the Swedish Natural Science Research Council and the Swedish Board of Technical Development is gratefully acknowledged. Valuable advice considering the preparation of *(R)-(+)* p-tolylsulfinyl quinone was provided by Dr. Wolfgang Stutz of Ciba-Geigy Munchwihlen AG, Switzerland. We thank Professor W. T. Ford for a preprint of ref 16a.

Registry **No.** la, 18232-03-6; lb, 135615-63-3; IC, 18232-09-2; (\pm) -2a, 135615-64-4; (\pm) -2b, 135615-65-5; (\pm) -2c, 135615-66-6; 3, 135615-67-7; **4,** 135615-68-8; **6,** 135619-93-1; *(f)-trans-8a,* $Fe(Pe), 132-16-1; BuSH, 109-79-5; 1,4-benzoquinone, 106-51-4;$ thiophenol, 108-98-5; cyclohexanethiol, 1569-69-3; l-bromo-2,5 dimethoxybenzene, 25245-34-5; (S)-(-)-menthyl p-tolylsulfinate, 1517-82-4; 1,3-cyclohexadiene, 592-57-4. 135615-69-9; HQ, 123-31-9; DMSO, 67-68-5; Pd(OAc)₂, 3375-31-3;